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Analytical investigation of the open boundary conditions in the Nagel-Schreckenberg model
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We theoretically investigate the mechanism of the open boundary conditions in the deterministic Nagel-
Schreckenberg model, which was studied mainly by numerical simulations before. Our studies concentrate on
the open boundaries and have found an effective approach for deducing the analytical expression of inflow. We
also raise a removal rule which is analyzable. These findings provide a theoretical explanation of the behaviors
of the open boundaries and allow the exact prediction of the traffic state by using the injection rate and the

removal rate.
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I. INTRODUCTION

Cellular automata (CA) are a powerful tool for research-
ing traffic flow [1-7]. In comparison with the traditional ap-
proaches, CA can be used very efficiently for computer
simulations.

The Nagel-Schreckenberg (NS) model [6] is a typical
one-dimensional CA model that has been researched widely
for years. In this model, space and time are discrete. The
road is modeled as a one-dimensional lattice with L sites that
are labeled in sequence by 1-L from the left. Each site can
be either empty or occupied by a car with velocity 0—v .,
(Umax 15 assumed to be the maximum velocity that one car
can reach). All sites are updated according to the following
four rules:

(1) acceleration—uv :=min(v+1,v,y)

(2) slowdown—v :=min(v,g) (where g is the number of
empty sites in front of the car)

(3) randomization—uv := max(v—1,0) with probability p

(4) movement—move v sites forward, x:=x+v

The NS model provides a realistic description of traffic
flow, and it can reproduce the basic features of real traffic
flow, e.g., the phase transition between free flow and jam-
ming [1,7]. There also exists an improved version of the NS
model, called velocity-dependent randomization (VDR)
model [8]. In this model, the randomization parameter p is a
function of velocity v, which could be described as p
=p(v(z)). This model can reproduce more complex phenom-
ena, such as metastable states, which have been observed in
real traffic flow [9] but do not exist in the NS model.

Behaviors of the NS (VDR) model also depend on the
boundary conditions. There are two kinds of boundary con-
ditions: periodic boundary conditions and open boundary
conditions [ 10~13]. In a periodic system, cars move on a ring
and the car density of the system remains constant. Open
boundary conditions, on the other hand, are much more com-
plex. In an open system, cars enter the road from the left
boundary, and leave via the right boundary. Consequently,
some characteristics that have gained much attention in open
boundary systems do not exist in periodic systems, such as
inflow and outflow. Moreover other characteristics of open
boundary systems are quite different from those of periodic
systems [12,13], including global density and density pro-
files.
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Open boundary conditions consist of the injection rule
(left boundary) and the removal rule (right boundary), which
are characterized by the injection rate o and the removal rate
B, respectively. As for the NS model, there are mainly two
types of open boundaries: the “standard” open boundaries
[12] and the “expanded” open boundaries [14]. The differ-
ence between these two types lies in the injection rule, but
their removal rule is the same:

Removal rule. If a car’s velocity is large enough to move
out of the road from right boundary, then it is removed from
the road with probability B. With probability 1—-p8, the car
stops at the last site.

This rule can be easily realized with the use of an addi-
tional site next to the right boundary. When updated, this site
is cleared first and then occupied with probability 1-p.

The standard injection rule directly derives from the
asymmetric simple exclusion process (ASEP) model. Behav-
iors of the NS model with the standard injection rule have
been investigated vividly in Refs. [12,13] by numerical
simulations, including inflow, density profiles, and phase dia-
gram. The standard injection rule is defined in the following
way:

Standard injection rule. With probability « a car with ve-
locity v=v,,, is created at site O; this car immediately moves
according to the NS rules. If site 1 is occupied by another
car, the injected car is deleted.

The standard injection rule is also easy to implement.
However, its behaviors are very astonishing—the state of
maximum current is totally absent, which has been clearly
demonstrated in Refs. [12—14]. In other words, the inflow is
not a monotone increasing function of the injection rate « in
the system with v,,, =3, which is contrary to intuition. Nu-
merical simulations indicated that the inflow reaches its
maximum (g;, = 0.683) at @~ 0.83 for v, =5. This charac-
teristic causes part of possible system states to be inacces-
sible, and the phase diagram of the NS model is quite differ-
ent from that of the ASEP model [12-14].

To overcome this disadvantage, a different injection rule
is proposed [15]. It is defined as follows:

Expanded injection rule. The left boundary is expanded
from a single site to a minisystem of width v,,,+1 as shown
in Fig. 1. When updated, if there is a car in the minisystem,
it has to be emptied first. Then a vehicle with a initial veloc-
ity of v, i inserted with probability p;,. Its initial position
is the site at the right end point of the boundary if no car is
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FIG. 1. The expanded injection rule proposed in Ref. [14].

present in the main system within the first v ,,, sites. Other-
wise its initial position is the site with v, distance from the
first car in the main system (Fig. 1).

With the help of such a rule, high inflow can be achieved,
so the whole spectrum of possible system states is accessible.
Moreover, it is analyzable; that is, one can calculate the in-
flow using an expression. As a result of those advantages, the
expanded injection rule has become more popular than the
standard one [16-18].

However, the behaviors of the standard injection rule are
much more interesting. It is significant to give an explanation
of its surprising characteristics, and some conclusions have
already been drawn. In Ref. [12], a phenomenon named
“buffer effect” is noticed, which is developed due to the hin-
drance an injected car feels from the front car at the begin-
ning of the road. It is regarded as the main cause of the
strange behaviors of the standard injection rule in the system
with v, = 3. Moreover, buffer effect is also used to predict
the phase diagram of the system as a qualitative approach.

The buffer effect is a good qualitative explanation for the
mechanism of the standard open boundary conditions. But it
is better to find some analytical results for the influence of
the open boundaries. Our work can be summarized into two
parts. First, a method for deriving the analytical expressions
of inflow is found by modeling the evolution of the system as
a Markov chain, and this method is also adaptable for the
expanded injection rule. Second, we design an analyzable
removal rule. All these findings help to construct a system
whose phase (free flow or jamming) is exactly predictable
simply with « and f3.

This paper is organized as follows. In Sec. II, we model
the car-injection procedure, and propose a method which can
derive the analytical expression of inflow. In Sec. III, the
method is verified by examples. In Sec. IV, we put out an
analyzable removal rule. Section V is the conclusion and
discussion.

II. MODELING THE CAR-INJECTION PROCEDURE

The relationship between « and inflow is the most impor-
tant characteristic of the injection rule. The a-inflow curve of
the standard injection rule was previously found out by using
numerical method in Ref. [12]. This section describes a
method by which the analytical expression of inflow can be
obtained.

Suppose that ¢ is a car on the road; let v,(c) be the
velocity of ¢ at time t. According to the NS rules, if
minf[v,(c)+1,v,,,]> g7 (¢), where g/(c) is the number of
empty sites in front of ¢ at time 7, then ¢ can only move g (c)
sites ahead during the update at time ¢. Then ¢ has to slow
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FIG. 2. Illustration of the slowdown caused by injection proce-
dure. The vertical direction is time and the horizontal direction is
space; cars move from left to right.

down because it cannot accelerate or keep the maximum ve-
locity, and this procedure is called a slowdown. We call g/ (c)
the degree of this slowdown. The degree of a slowdown tells
the car’s velocity after it has slowed down.

The influence of the removal rule is the primary cause of
slowdowns [12]. But it is possible for slowdowns to happen
due to the only influence of the standard injection rule, which
is shown in Fig. 2 (in the deterministic NS model with
Umax=2). This kind of slowdown is named as “injection-
produced slowdown” (IPSD) to distinguish it from the slow-
downs caused by the removal rule. It is the topic on which
we concentrate in this section.

Theorem 1. In deterministic Nagel-Schreckenberg model
(DNS), the minimum degree of IPSD is 4.

Proof. See Appendix A.

Theorem 1 implies several things as follows:

(1) Suppose that ¢ is a car on the road. If ¢ had IPSD at
time 7, then v,,(c) =4.

(2) In DNS(v0x=4) (DNS with v, =4), IPSDs never
happen.

(3) Because the velocity of a car at site d has to be lower
than d, a car at site 1-3 will not have IPSD.

Let c? be the car that is nearest to the left boundary at
time ¢ and /,(c) be the location of car ¢ at time 7. Then the
state of system at time ¢ is defined as min(/,(c?),vec+ 1), and
denoted by S,. Since cars on road will move and a new car
may be injected at each step, the system will jump to a new
state at time 7+ 1, which is called “state transition.” The state
of the system is updated each time step. Thus the time evo-
lution of the system can be described by a sequence of states.

Using Theorem 1, the following theorem was proved:

Theorem 2. In DNS, suppose that the state of the system
at time ¢ is S; and no car is injected, then there is only one
possible value for S, if v =5.

Proof. See Appendix B.

This theorem implies that in DNS (v, =5), for two dif-
ferent time steps #; and ?,, if S,1=S,2 and no car is injected at
times #; and 7,, then Sf|+1 =S,+1- Otherwise, if v, =6, Si+1
may not be equal to Siy1-

Moreover, if the state at time ¢ is S, and a car is injected,
then S,,; can be calculated exactly and easily according to
the NS rules and the standard injection rule. We can find that
there is also only one possible value for S,,;:
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FIG. 3. The state transition diagram of DNS(v ., =2).
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According to Theorem 2, in DNS with v,,,,, =5, suppose that
S,=i, (i;#1) at an arbitrary time ¢, if no car is injected at
time ¢, then S,,; has only one possible value i,,;. Recall that
the injection rate is «; the probability that no car is injected
at time ¢ is 1 —a. Then

if 5,=1

. if a car is injected at time ¢.
if §,>1

P(Sy = it+l|Sl =iy, ..., 8, =i) = P(Sy, = it+l|St= i)=1-a.

If a car is injected at time ¢, then the following is true:

P(St+1:it_1|51:il’ Sy =i) = P(Spy =0 - 1|Sz:iz)

=a, where §,# 1.
Especially, if S,=1, whether cars are injected or not, S,,;=3,
P(S,1=3lS,=1)=1.

Therefore, we can assert that the discrete time evolution of
the system is a homogeneous Markov chain. Moreover, if
a+#0,1, then this Markov chain has the following character-
istics:

(1) Its state space is irreducible, because its state space is
closed and every state is accessible by others.

(2) Tt is aperiodic, because the probability of the state
transition v, +1 — v+ 18 1—a.

(3) Its state space is finite, because v,y is a finite number.

In accordance with the theory of stochastic processes, a
homogeneous Markov chain satisfying three conditions
above is ergodic, whose limiting distribution exists. Let p;

denote the limiting probability of state i, and 15=[p1--- Pl
then p; can be obtained by solving the equation

P=PT,

n
EP,':L
j=1

where T is the one-step transition probability matrix, which
indicates the probabilities of all possible one-step state tran-
sitions.

Actually, the inflow Q;, is the expectation of the number
of injected cars per step. With the consideration that if the
state of the system is 1, then no car could be injected. Thus
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the inflow with injection rate a can be calculated by using
the expression Qj,(a)=aS!mx*p. Noting that S0mw*p =1,
we have Q;,(a)=a(l-p,).

From the above analysis, the procedure for deriving the
analytical expression of inflow in DNS(v,,,x =5) can be de-
scribed as follows:

Step 1. For each state, find which state it jumps to under
conditions “car in” and “no car in.”

Step 2. Construct the one-step transition probability ma-
trix.

Step 3. Calculate limiting probabilities of state p.

Step 4. Calculate the inflow using Q;,(a)=a(1-p,), with
a*0,]1.

Step 5. Deal with the special case @=0,1 (Sec. IIT will
indicate how to do this).

It should be noticed that for the standard injection rule,
expressions of inflow are different for different values of

v max-

III. EXAMPLES AND ANALYSIS

This section demonstrates the applications of the method
proposed in Sec. II. It is composed of three parts: the appli-
cations of the method to DNS(v,,,,=35) for the exact solu-
tion, the applications of the method to DNS(v,,x = 6) for the
approximate solution, and the use of this method to solve the
expanded injection rule.

A. Exact solution of inflow in DNS(v,.x=5)

In this subsection, the method will be applied to two
cases: DNS(v.x=2) and DNS(v,,,x=5). The exact solutions
of their inflows are achieved.

The first example is DNS(v,,,.x=2). Its state transition dia-
gram is given in Fig. 3.

Here is the one-step transition probability matrix:

0 0 1
T=|la 0 1-a.
0 a l-«a

If «!=0,1 and letting I;=[p1 ,P2,P3)5 P could be obtained by
solving

P=PT,
pitpry+p3=1L
Then

- a? « 1

l+a+d l+a+ 1+a+a? ]|

TABLE I. Data gained by the analytical and numerical approaches in DNS(v ., =2).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 1
Numerical 0.099 0.194 0.281 0.359 0.429 0.490 0.543 0.590 0.631 0.663 0.667
Analytical 0.101 0.194 0.281 0.355 0.431 0.490 0.544 0.589 0.631 0.663 0.667
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FIG. 4. Comparison between analytical and numerical results of
inflow in DNS(v 0 =2).

a(l + a)

Oin(@)=a(l —py) = where a e (0,1).
l+a

+a¥
There is a special case when a=1. Under this condition,
state transition is a cycle: 2—1—0—2—---; evidently,
p1=1/3=0;,=2/3. Moreover if a=0, Q;,=0. The same
values are obtained if 0 and 1 are substituted into Q;,(a), so
that the expression Q;,(a)=a(1+a)/(1+a+a?) holds for the
whole domain of a.
Hence, we know that in DNS(v,,,,=2),

Qin(a) = a(l—-'-a)z’ a e [O’l]
l+a+«

Table I and Fig. 4 show that data gained by numerical simu-
lations are highly consistent with the predictions of analyti-
cal expression.

The second example is DNS(v,,,x=53). Its state transition
diagram is given in Fig. 5.

The result is shown as follows (details are omitted):

a(l+a-a®+a)

Qi) = l+a-a+a*+a°

Table II and Fig. 6 show that the analytical results exactly
agree well with those by numerical simulations. From the
examples above, we can see that for DNS with v, =35, the
exact solution of inflow is found.

B. Approximate solution of inflow in DNS(v,,,.x=6)

In most of the researches and applications, v, is limited
below 10, because a greater number has no practical signifi-
cance. This method can also find out the approximation to
the inflow if v,,, is between 6 and 10. This subsection will
give examples of cases DNS(v,x=7), DNS(vmax=8), and
DNS(vax=10).
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FIG. 5. The state transition diagram of DNS(v.c=5).

Theorem 2 tells us that in DNS(v,,,x=7), for two different
steps t; and 7, that satisfy S1,=S:, and if no car is injected at
times 7, and 7,, then S,1+1 may differ from S,2+1. That is, the
time evolution of DNS(v,,x=7) is not Markovian. For ex-
ample, we can give two state sequences:

1 1 1 1 1 0

State sequence 1. 7—6—5—4—3—2—6.

1 1 1 1 1 1 0 0

State sequence 2. T—6—5—4—3—-2—1—-2-5.

In the sequences above, condition “1” stands for car in,
whereas condition “0” stands for no car in. It is clear that if
S,=2 and no car is injected, then S,,; may be 5 or 6.

However, if we randomly choose a value from all the
possible values of S,,; and assume it to be the only possible
value for S,,;, then we can still apply the same method. In
this case, if we assume that the only possible value for S, is
6, then the one-step transition probability matrix is obtained:

0010 0 0 0 0
«0001-a0 0 0
0a 00 0 01-a 0
00a0 0 0 0 l-a

™loo00a 0 0 0 1-a
0000 a 0 0 l-a
0000 0 a 0 l-a
0000 0 0 a I1-af

Comparison of results by two approaches is shown in Table
1T and Fig. 7.
Analyses for DNS(v,,,=8) are more complex. In addition
0 0

0
to the exceptions 2—6 and 2—5, there are also 3—7 and
0 0
3—8. Letting the assumption be that §,=2—S,,;=6 and S,
0

=3—35,,1=8, then the analytical expression could be de-

duced. Comparison of results by two approaches is shown in
Table IV and Fig. 8.

As for DNS(v,,,.x=10), the results are shown in Table V
and Fig. 9. We can find that the results gained by analytical
method are not as accurate as those in the previous cases.

For larger value of v, the evolution of the system is
much more complex; thus more assumptions have to be

TABLE II. Data gained by the analytical and numerical approaches in DNS(v,,,=35).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 1
Numerical 0.098 0.201 0.301 0.402 0.490 0.570 0.633 0.670 0.681 0.669 0.667
Analytical 0.099 0.200 0.299 0.397 0.489 0.571 0.633 0.670 0.680 0.669 0.667
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FIG. 6. (Color online) Comparison between analytical and nu-
merical results of inflow in DNS(v . =53)-

made to apply this method. That will evidently make the
deviation between the numerical and analytical methods
higher. But, as for DNS with v, =10, the comparison
shows that a high degree of accuracy is achieved.

C. Solving the expanded injection rule

In fact, the analytical expression of inflow under the ex-
panded injection rule was already derived in Ref. [15]:

a — of/maxt 1

Oin(a) = FpEpT—sY

Umax+1

The same expression can also be obtained by the presently
described method. Here the state of the system is also de-
fined as S,:min(l,(c?),vmax+ 1). In accordance with the ex-
panded injection rule (already defined in Sec. I), we can find
that all cars on the road move with velocities v,,,, without
the influence of removal rule. Then the following can be
easily proved to be true:

S S, —1
t+1— U + 1

if S, # 1,

if a car is injected at time ¢

if no car is injected at time ¢

Si1=Umax+ 1 if S;=1.

It is easy to know that its time evaluation is a Markov chain,
and this Markov chain is also ergodic because it satisfies the
three conditions mentioned in Sec II. The state transition

diagram of the system with expanded injection rule is shown
in Fig. 10.
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FIG. 7. (Color online) Comparison between analytical and nu-
merical results of inflow in DNS(v,,x=7).

The one-step transition probability matrix is

1
1o -«
e .
1o l-«a
a l-a
. J
Umaxt1

Letting I_;= [pl. . ‘pvmax+l]’ we get plz(avmax_avmax+1)/
(1-a*max*!) by solving the equation

P=PT,
Umax'H

E Pj=1-
j=1

Because if the state of the system is 1, then no car can
enter the road. Thus the inflow can also be calculated by
0(@=aZl* p=a(l-py). Then Q(a)=(a—a’ml)
(1—a*max*!) This result is the same as that in Ref. [15], but
the deduction is simpler.

IV. ANALYZABLE REMOVAL RULE

The standard removal rule is quite simple and demon-
strates the reality. However, the outflow under the standard
rule is also unpredictable by analytical means.

Suppose that the flow in the road is ¢, and the removal
rate is 3. The procedure of a car’s departure is composed of
two steps. The first step is to enter the boundary site (the last
site) with probability ¢, and the second is to leave the bound-
ary site with probability B. Thus, the outflow could be di-

TABLE III. Data gained by the analytical and numerical approaches in DNS(v.c=7).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Numerical 0.100 0.200 0.300 0.400 0.497 0.588 0.661 0.700 0.697 0.6667
Analytical 0.101 0.201 0.301 0.399 0.497 0.587 0.660 0.697 0.692 0.6667
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TABLE IV. Data gained by the analytical and numerical approaches in DNS(v ., =8).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Numerical 0.100 0.200 0.300 0.400 0.499 0.593 0.671 0.712 0.702 0.6667
Analytical 0.099 0.201 0.300 0.395 0.498 0.589 0.668 0.707 0.696 0.6667

vided into two parts: the inflow into the boundary site and
the outflow from the boundary site.

In a statistical view, if g=p, then the long-time average
inflow of the boundary site is supposed to be equal to the
outflow. However, as a result of the existence of stochastic
fluctuations, the inflow is always different from the outflow
in a short period of time. When the inflow gets larger than
the outflow, cars will gather at the right boundary, which
causes traffic jams. But as has already been proved [16], the
outflow of jams is the maximum flow that can be reached in
the NS model. This means it is very probable that new jams
will be generated by the already formed jams, which will
push the system into the jamming phase. Thus, in the phase
diagram, the point («, B) satisfying Q;,(a)= is in the region
of the jamming phase [12,14,15].

In order to construct a predictable system, we can use a
simple but effective method. The right boundary shown in
Fig. 11 is the expansion of the standard right boundary. The
single boundary site is enlarged into a minisystem. We can
consider this minisystem as a car parking with limited park-
ing space. The removal rule is composed of two steps:

(1) If a car is to move out of the main road, it will then be
inserted into the parking if the parking is not full. Otherwise,
this car stops at the last site of the main road.

(2) With probability B, one car (this car could be selected
by the “first in first out” rule) in the parking moves out of the
system immediately.

Obviously, if the capacity of the parking is set to 1, the
original right boundary is recovered. However, with more
parking space, cars that cannot leave in time could be stored
in the parking temporarily. In this way the stochastic fluctua-
tions can be ‘“neutralized,” which means that a short-time
shock wave of car flow will not push the system into the
jamming phase, as shown previously. Generally speaking, a
larger capacity results in better performance but greater loss
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FIG. 8. (Color online) Comparison between analytical and nu-
merical results of inflow in DNS(v ., =8).

of reality. Numerical simulations show that the capacity
C=max(3,v,,,,) is a good choice.

Next, an analysis of the expanded right boundary is given.
If the inflow Q;, <3, then the parking will hardly be full, and
cars can enter and leave it freely. Thus, traffic flow will be in
the free flow phase, and the outflow that from the parking is
equal to Q;,. If Q;,= B, then the parking will always be full
of cars; thus the newly arrived cars will have to stop at the
end of the main road, which results in jams, and the outflow
from the car parking is limited to 3.

Therefore, the analytical expression of the outflow under
the expanded right boundary condition is given as follows:

_ Qin if Qin < ﬁ
MUB i u=8
This result is confirmed by numerical simulations (Fig. 12).
Hence, the state of traffic flow is predictable by compar-
ing @ and B. If Q;,(a)> B, then it will be jamming phase.
Otherwise, traffic will be in the free flow phase. This implies

that the jamming phase and the free phase are separated by
the a-Q;, line, just as shown in Fig. 13.

V. CONCLUSION AND DISCUSSION

This study has investigated the mechanism of the standard
open boundaries in the deterministic Nagel-Schreckenberg
model in an analytical way. Our work mainly focused on two
things. First, we modeled the car-injection procedure under
standard injection rule by Markov chain, which made the
deduction of analytical expression of inflow possible. Fur-
thermore the applications of our method were also demon-
strated. Second, we put out an analyzable removal rule.

All of these works make the phase of traffic flow predict-
able simply by knowing the injection rate « and the removal
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FIG. 9. (Color online) Comparison between analytical and nu-
merical results of inflow in DNS(v ,,,=10).
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TABLE V. Data gained by the analytical and numerical approaches in DNS(v = 10).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Analytical 0.100 0.200 0.300 0.400 0.499 0.597 0.684 0.731 0.711 0.6667
Numerical 0.101 0.200 0.301 0.401 0.500 0.604 0.683 0.723 0.700 0.6667

rate 3. They also allow deeper insight into the open bound-
ary conditions.

However, the investigation reveals only a very small part
of NS model. After all, the randomized parameter p is with-
out consideration, which is an important parameter that de-
termines the bulk dynamics. In the stochastic NS model,
characteristics of IPSD will become much more complex and
thus may not be described by a few theorems. However, for
the stochastic NS model, if v,,,,, «, and p are very small, the
method can still work. This is illustrated by the case in which
vmax=2-

As a result of the randomization, the time evolution of the
stochastic NS model with v,,,=2 is evidently not Markov-
ian. To apply the method proposed in Sec. II, we have to
make some assumptions; the state transition diagram is
shown in Fig. 14 (details are omitted). The solution is

)

Note that if p=0, the expression above is the one for deter-
ministic NS model with v,,,=2 (see Sec. III).

Figure 15 shows the deviation between analytical results
and simulation results for different combinations of p and a.
It can be clearly seen that increase in either p or & makes the
deviation greater.

From this simple illustration, it can be deduced that for
even the simplest case of the stochastic model, the applica-
tion of the method presented in this paper is fussy and the
results have low precision. Hence, with regard to the stochas-
tic model, statistical approaches may be more practicable and
effective.

a(ap - a-p)
2

Qin(a) = a'<1 -

Pp+ap—ao—a—ap®—1
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FIG. 10. The state transition diagram of DNS with expanded left
boundary.
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APPENDIX A: PROOF OF THEOREM 1

Lemma Al. If v/(c)<vg, and g;(c)=uv,c), then
grn~(c)]=g; (c), where n™(c) is the first car on the left side
of c.

Proof. Since g/ (c)=v/c), then I, (c)=I(c)+g;(c).
Letting ¢'=n"(c), [ 1(c')=<I(c)-1 implies that g/ (c’)
=l1(0) =l (c)-1= [lz(c)"'g:—(c)]_[lt(c)_ 1]-1= g:(c)-

Lemma A2. If v(c)<vg and g (c)>v,(c), then
g;.][”_(c)] >v,(c).

Proof. Under the given condition, car c¢ 1is able
to increase its velocity; thus [,.,(c)=[(c)+v,(c)+]1.
Letting ¢'=n"(c), l,.1(c')=<I(c)-1 implies that g (c")
=li(c) =L (c)=1>v/(c).

Theorem 1. In DNS, the minimum degree of IPSD is 4.

Proof. This theorem can be proved by two steps.

There exists 4-IPSD in DNS if v,,>4, which is
already illustrated in Fig. 2. Thus, we have to prove that
s-IPSD(s<4) cannot be produced by injection procedure.

Supposing that ¢’ experiences s-IPSD at time ¢’ and let-
ting n*(c) be the first car on the right side of ¢, then we can
find another car ¢ after applying the following:

Procedure

Let c=n*(c’) t=t'-1

while (c is slowed down at time ?)

c=n*(c) t=t-1

}

return ¢

We can definitely find a car ¢ that satisfies the condition,
because the first injected car always remains free driving.
Therefore, Lemmas Al and A2 imply that v,(c)<s. Obvi-
ously we know that 0-IPSD is impossible in DNS because it
causes v,(c)<0.

Suppose that ¢ is injected into the system at time
t; (;<t), then there are only three possible ways for ¢ to
arrive at [,(c) at time r:

(1) “Direct hit>—z—1,=1 and v,(c)=1,(c).

(2) “Acceleration”—t—1;,>1 and Vi ,=i-1<i=t,
vi=min(v7_;+1,0,). That means ¢ remains free driving
from time .

Road

‘7Main Road——— ‘

H B

LT
\\

_~

B

fParking*‘

FIG. 11. Schematic representation of the enlarged right bound-
ary; the single boundary site is expanded.
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outflow(cars/step)

FIG. 12. Outflow in dependence on the injection rate and the
removal rate (v, =5) (standard injection rule and the new removal
rule).

(3) “Mixed”—r—1;>1 and ¢ has experienced IPSD.

Then, this theorem will be proved if we show that
s-IPSD(s<4) can be produced by none of these three ways.

For the direct hit way, then t—f;=1 and v, [n (c)]
=g (¢)=v,(c)-1; thus we have v,(c)>v.[n (c)]. That im-
plies g, [n (c)]=v,(c) >v,1[n"(c)]. Therefore, n™(c) is free
driving at time 7+ 1, which is contrary to the assumption. The
conclusion is that IPSD will be produced by direct hit.

For the acceleration way, proof of inexistence of 3-IPSD
is given first. If 3-IPSD happens, then car ¢ must satisfy
v,(c) <3. The situation can be divided into two cases. In the
system with v,,,>2, it is sure that r—7,=2 [because if
t—1;>2, then v,(c)=3]. To ensure the conditions v,(c) <3
and 7—1;=2, it is obvious to see that v,(c)=g;(c)=2. Thus,
n~(c) will not have 3-IPSD at time 7+ 1, which is contrary to
the assumption. In the case of the system with v, =2, be-
cause v, <3, definitely 3-IPSD will not happen.

We can also prove that 1,2-IPSD cannot be produced by
acceleration using same approach shown above. Thus
s-IPSD(s<4) is not producible for the acceleration way.

For the mixed way, we also prove that 3-IPSD does
not exist first. Suppose that until time #, ¢ has been

PHYSICAL REVIEW E 79, 031115 (2009)

slowed down for several times, and the minimum degree
among these IPSDs is d,, Notice that v,(c)<3; thus,
dpin=v,c)<3=d,=2. That means that if 3-IPSD is
produced by the mixed way, it requires that s-IPSD(s<3)
happen first.

Recall that we have proved that s-IPSD(s<3) could be
produced by neither of other two ways. Thus, only mixed
way can make s-IPSD(s<3) happen. Using the same ap-
proach, a sequence of recursive conclusions is achieved,
which causes contradiction: to generate 3-IPSD, there must
exist 2-IPSD. Generating 2-IPSD requires 1-IPSD, and so
on. Finally, we find that the reason for all s-IPSD(s<<4) is
0-IPSD. But 0-IPSD does not exist in DNS; it follows that
3-IPSD cannot be generated by mixed way. In the same way,
we can prove that 1,2-IPSD cannot be produced by mixed
way.

It is now obvious that the theorem holds. The minimum
degree of IPSD in DNS is 4; as a consequence, if v, =4,
there are no IPSDs at all.

APPENDIX B: PROOF OF THEOREM 2

Lemma BI. c is a car on the road. If ¢ has IPSD at time ¢,
then ,,,(c) =8.

Proof. We have already known that if car ¢ has IPSD at
time ¢, then v,,;(c) =4. Moreover the car at site 4 has possi-
bly IPSD. These imply that if car ¢ has IPSD at time ¢, then
li1(c)>8.

Consider the situation illustrated in Fig. 2. [(c) and
v.1(c) could be 4 simultaneously; thus we complete the
proof, 1,,,(c)=8.

Theorem 2. In DNS, suppose that the state of system at
time ¢ is S, and no car is injected, there is only one possible
value for S, if v =5.

Proof. Let L,.,(d) denote the set which contains all
possible values for the location of a car at time 7+1,
whose location at time ¢ is d. Then the theorem could be
proved by showing that the following assertion is true: in
DNS(vx=5), Vd satisfying 0<d<vg,+1, then
|Lt+1(d)| =1 or Vg <min[L,,(d)].

1

1

0.9+ 09k
0.8} 08l
...  Free Flow 07 Free Flow
o o
§ 06 *é 06}
'S 05 ‘05
g 2
2 041 2 0.4r
03r i 0.3f :
Jamming Jamming
0.2 0.2
0.1 : : : : : : : : 0.1 : : : : ; ; : ,
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

injection rate

(a)

injection rate

(b)

FIG. 13. Phase diagram in dependence on the injection rate and the removal rate (v,,,,=5). (a) Standard injection rule. (b) Expanded

injection rule.
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FIG. 14. State transition diagram of the stochastic NS model
with v,,,=2 and standard injection rule.

Another thing to notice is that suppose a car is on site d at
time ¢. Then its velocity is limited within a few values; e.g.,
if a car is on site 1, then its velocity is definitely 1. This is
determined by the rules.

Without consideration of IPSD and v,,,, we can easily
find the possible velocities of cars on the first few sites.
Letting V(d) denote the set of possible velocities on site d,
we have V(1)={1}, V(2)={2}, V(3)={2,3}, V(4)={4}, and
V(5)={3,5}, and we also have L,,(d)={d+v+1|v e V(d)}.
Then we can discuss it based on the following cases:

(1) vpa=6—Since cars on sites 1-3 will never have
IPSD, it follows that V(3)={2,3}. Thus L,,,(3)={6,7}. No-
tice that v, =6; according to the definition of state, if
S,=3 and no car is injected, then S,,; € {6,7}.

(2) vmax=5—TFirst, without consideration of IPSD,
V()={1}, V(2)={2}, V(3)={2,3}, V(4)={4}, and
V(5)={3,5}. Therefore, L, ;(3)={6,7} and L,,,(5)={9,10}.
According to Lemma B1, if ¢ experiences IPSD at time ¢,
then /,,,(c) =8. We can see that v,,,,<min(6,7,8,9,10).

Therefore, we know that |L,,(1)|=|L,,(2)|=1 and if
V d €{3,4,5}, no matter if affected by IPSD or not, we have

PHYSICAL REVIEW E 79, 031115 (2009)

deviation(cars/step)

FIG. 15. Deviation between analytical results and simulation
results for the stochastic NS model.

Umax <min[L,,;(d)], which tells us that the assertion holds.
For remaining cases v, =4, IPSD is reasonably ignored,
and the proof is the same.

() vma=4—V()={1}, V(2)={2}, V(3)={2,3}, and
V(d=4)={4}. Thus L, ,(3)={6,7} and v, <min(6,7).
Moreover if V d € {1,2,4}, then |L,,,(d)|=1.

(4) v =3—V d satisfying 0 <d<v,,+1, there exists
|V(d)|=1. Thus, |L,(d)|=1.

Hence, if the state of system at time 7 is S; and no car is
injected, there is only one possible value for S, if
Umax =35. The proof is complete.
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